
Cosmology E. Pajer, BUSSTEP 2024

Tutorial 2

These problems explore the quantization and correlators of metric perturbations during inflation. Notice
that the problems indicated as “Optional” should be tackled last.

1. Scale invariance

The fact that the de Sitter metric,

ds2 =
−dτ2 + dxiδijdx

j

τ2H2
, (1)

is invariant under dilations, {τ,x} → {λτ, λx}, implies that any correlator which does not depend
explicitly on time must obey,

〈φ(x1) . . . φ(xn)〉 = 〈φ(λx1) . . . φ(λxn)〉 . (2)

Show that the corresponding momentum-space correlator,

〈φk1 . . . φkn〉 =: (2π)3δ3

(
n∑
a=1

ka

)
Bn(k1, . . . ,kn) , (3)

must therefore scale as,

Bn(λk1, . . . , λkn) =
1

λ3(n−1)
Bn(k1, . . . ,kn) . (4)

2. My first wavefunction

In this problem you will first compute the cubic wavefunction coefficient and then use it to compute
the bispectrum (three-point function).

(a) Using the appropriate diagrammatic Feynman rules, compute the cubic wavefunction coefficient
ψ3(k1,k2,k3) for a massless scalar field on de Sitter induced by the interactions ϕ̇3 and
ϕ̇(∂iϕ)2.

(b) Using the Born rule derive the following relation between the cubic wavefunction coefficient
ψ3 and the bispectrum,

〈
3∏
a=1

φ(ka)〉′ = − Reψ3({k})∏3
a=1 Reψ2(ka)

. (5)

which is valid to linear order in ψ3 and for parity-even interactions.

(c) Compare the above result with the direct calculation you did in Problem 4 of the first tutorial.

3. Check of the cosmological optical theorem

In this problem you will check the cosmological optical theorem for the tree-level quartic wavefunction
coefficient ψ4 of a scalar in Minkowski.

(a) Using the Feynman rules for the wavefunction and the Minkowski propagators

Kk(t) = eiEt Gk(t1, t2) = −ie
iEt2

E
sin(Et1)θ(t1 − t2) + (t1 ↔ t2) , (6)
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compute the tree-level contact ψ3 and optionally the s-channel tree-level exchange ψ4 from
the interaction λφ3/3! in Minkowski spacetime. You should find

ψ3 = − λ

E1 + E2 + E3
, ψ4,s =

λ2

ELERET
, P =

1

2E
(7)

where E =
√
k2 +m2 and

EL ≡ E1 + E2 + Es , ER ≡ E3 + E4 + Es , ET =

4∑
a

Ea . (8)

(b) Hence, check that the following relation implied by unitarity is satisfied if λ ∈ R,

ψ4,s(Ea, s) + ψ4,s(−Ea, s)∗ = −P (s) [ψ3(E1, E2, s) + ψ3(−E1,−E2, s)
∗] (9)

× [ψ3(E3, E4, s) + ψ3(−E3,−E4, s)
∗]

4. Check the manifestly local test

(a) The cubic wavefunction coefficient corresponding to the interactions φ̇3 was computed in
Problem 2 and is

ψ3 ∝
(k1k2k3)2

E3
T

, (10)

where ET = k1 + k2 + k3. Verify that this satisfies the manifestly local test

∂k1ψ3

∣∣
k1=0

= 0 , (11)

(b) The cubic wavefunction coefficient corresponding to the interactions φ̇∂iφ
2 was computed in

Problem 2. Let’s write it as

ψ3 ∝
1

E3
T

[
24 (k1k2k3)

2 − 8ET (k1k2k3)

(∑
a<b

kakb

)

− C1E
2
T

(∑
a<b

kakb

)2

+ 22E3
T (k1k2k3)− C2E

4
T

(∑
a<b

kakb

)
+ C3E

6
T

]
, (12)

where C1,2,3 are three numerical constants. Using the manifestly local test determine C1,2,3.
You should find C1 = 8, C2 = 6 and C3 = 2.

5. Optional: Tensor power spectrum.

Using

S2 =
M2
P

8

∫
d3xdτ a2

[
γ′ijγ

′
ij − ∂iγjk∂iγjk

]
(on de Sitter), (13)

derive the amplitude of the tensor power spectrum.

6. Optional: De Sitter Ward identities.

De Sitter spacetime has 10 isometries (the same number as Minkowski). We have already seen
that the 3 spatial translations and 3 rotations (homogeneity and isotropy), as well as the 1 scaling
isometry (τ → λτ,xi → λxi), impose constraints on the correlators. The other 3 isometries are
given by,

τ → γ τ , xi → γ
(
xi + bi (τ2 − |x|2)

)
(14)

where γ =
(
1− 2b · x− |b|2(τ2 − |x|2)

)−1
and are the analogue of boosts on de Sitter. These symmetries also impose non-trivial constraints
on the correlators, which you will now find.
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(a) Consider the infinitesimal symmetry transformation (expand (14) at small |b|). Show that
this symmetry is generated by the operator,

K̂i[τ,x] = −2xi (τ∂τ + x · ∂x) + (τ2 − |x|2)∂xi . (15)

(b) By transforming carefully to momentum space, show that the corresponding momentum space
operator is,

K̂i[τ,k] = 2 (d− τ∂τ + k · ∂k) ∂k − k
(
τ2 + ∂2k

)
, (16)

where d = 3 is the number of spatial dimensions.

(c) Hence derive the corresponding Ward identity for cosmological correlators,

n∑
b=1

K̂i[τb,kb]〈 ϕ̂kn
(τn)...ϕ̂k1

(τ1)〉 = 0 (17)

(d) For a massless scalar field, ∂τϕk ∼ τ → 0 in the limit τ → 0, and so (17) becomes,

n∑
b=1

[
2(d+ kb · ∂kb

)∂kb
− kb∂

2
kb

]
〈ϕkn

...ϕk1
〉 = 0. (18)

for the equal-time in-in correlator at the end of inflation. Show that when the correlator is a
function of the magnitudes k1, ...kn only, then this simplifies to,

0 = (Kb −Kb′) 〈ϕkn
...ϕk1

〉 (19)

where Kb =
d+ 1

kb
∂kb + ∂2kb .

for any pair of fields (b, b′).

Hint. You may use the fact that translation invariance implies that the total momentum must
vanish, so kn = −

∑n−1
b=1 kb.

(e) Check whether the bispectrum 〈ϕk3ϕk2ϕk1〉 computed in the lectures from the interaction∫
d4
√
−g ϕ3,

〈ϕk1
ϕk2

ϕk3
〉 ∝ 1

(k1k2k3)2

4−
∑
b,c

kb
kc

+

∑
b k

3
b

k1k2k3
log(kT τ)

 (20)

satisfies the (dS) boost Ward identity with the bulk operator in (16). Do you expect that the
bispectra from ϕ̇3 and ϕ̇(∂iϕ)2 that you computed in examples sheet 1 will satisfy these dS
Ward identities?

Hint. Set Z = cs = 1 and think carefully about what answer you expect to find in each case
before starting.

(f) Compute the bispectrum from the interaction,

S3 =

∫
d4x
√
−g ϕ(∇µϕ)2 (21)

for a massless scalar ϕ on de Sitter and confirm that when expanded at small τ it satisfies the
Ward identity (18).

Hint. There is a trick to doing the in-in time integral for this particular interaction: try
integrating by parts to make a factor of 2fk(τ), which must vanish since the mode functions
obey the classical equations of motion.
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7. Optional: Momentum conservation

The fact that an FLRW background is invariant under translations, x → x + b, implies that
correlators must also be invariant

〈φ(x1) . . . φ(xn)〉 = 〈φ(x1 + b) . . . φ(xn + b)〉 . (22)

Using this, prove that momentum-space correlators must always be proportional to a delta function
of the total momentum

〈φk1 . . . φkn〉 ∝ δ3
(

n∑
a=1

ka

)
. (23)
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