Cosmology E. Pajer, BUSSTEP 2024

Tutorial 1

These problems explore the dynamics and correlators of a scalar field on an inflating spacetime back-
ground. Notice that the problems indicated as “Optional” should be tackled last.

1. Classical dynamics of a massless scalar in FLRW

Consider a canonical (massless) scalar field,
1
Siel = [ atov=g |50 VueTue| )

(a) Find the classical equation of motion for (.

(b) Optional: compute the stress-energy tensor 7*” and show that V,T"” = 0 is a consequence
of the equations of motion.

(¢) For an FLRW background, show that the equation of motion in conformal time becomes,

"

02 (a9) + (K - 2= ta) =0, )

where a’ := 0,a. This is the equation of a damped harmonic oscillator.

2. The massless de Sitter mode functions

Here you will derive the mode functions fj appearing in the quantum free field as

Pr(7) = fu(m)an + fi(r)al . 3)
(a) Start from the Minkowski mode functions
in 1 —ikT
RI(T) = e (4)

V2k

Show that at sufficiently early times the de Sitter eom becomes the Minkowski eom for a fy.
We therefore expect afj to behave like (4) at early times.

(b) The most general solution to the de Sitter eom is,
fi(7) = (1l +ikr)e ™ + B(1 — ikT)e T (5)

where o and § are constants of integration. Find the « and S required for af) and Or(afy)
to match fMink and 9, fMink at some reference time 7.

(¢) Finally, show that in the limit 7. — —oo these coefficients obey,

) (H2 ) IH2 6727;1437'*
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and you therefore recover the mode function derived in the lectures (up to an unimportant
overall phase).

3. Two-point correlators in free theories

Using the Heisenberg picture, show that for a free massless scalar field on de Sitter,

(a) Tim (o (7) e (7)) = (27)°6°(k +K) Loy (7)
(b) }ig%@k(T)ka (7)) = (27)%8% (k + K) % , (8)
(©) Tim (T (7) i (7)) = lim (i ()T (7)) (9)
() T (I (1) (7)) = (20)°5° (k + K)ot (10)



Extra: You could try to also show these in the Schrédinger picture, using the wavefunction (30).

4. My first cosmological correlator

Compute the bispectrum of a massless scalar field on de Sitter induced by the interactions ¢* and
P(Digp)?.

5. Wavefunction: the path integral formalism

In this problem you will compute the Gaussian wavefunction of a massless scalar in de Sitter and
Minkowski spacetime using the path integral formalism. Recall that the wavefunction is defined
by the path integral

_ @ (no)=¢ )
U[¢; o] = / [D®] 51 (11)
Q
where the action is

1
S=-3 /d3xdna4 0,00"® . (12)
(a) By a shift in the action or otherwise, show that ¥[¢;70] = €*5[®] up to an irrelevant phase,

where
fi(n)

Sk, n) = o(k) , 13
a(k,m) ()fk(%) (13)

and f(n) are the mode functions.
(b) Hence show that U[¢, ] takes the form

Vol =exp |+ [ 0P K)n(et9s(K)] (1)
where

i Onfy
— 53 ”]{k} (770) . (15)
H?ng fi(no)
Hint: you can show that S[® ] reduces to a boundary term by brute force, but it’s much easier
to integrate by part the kinetic term and drop the term proportional to the equations of motion.

(o>

(¢) Using the dS mode functions show that

ik 1 3 = k2
= — T — — 7/
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Ya(k,m0) (16)

Discuss this result: what is the sign of Rey and why does that matter? What happens to
Im 5 in the late time limit and should we be worried about it?

6. Optional: Factorized and commutator forms for in-in correlators

Prove that the “factorised” and “commutator” expressions,

<O(T)> _ <O| |:T€(if7w(l+m)dT'?‘:linc(T/)):l @(T) |:T€(ifToo(li[s)dT/?:[int(T/)) ‘0> : (17)
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for a generic in-in correlator are indeed equivalent.

Hint: Proceed by induction. First prove that they are equivalent at order N =0 and N = 1. Then,
assuming that they agree at order N — 1, take the time derive of each Nth-order expression and
rewrite it as the correlators of some other field to order N — 1. This proves that the expression
agree to order N up to a constant. By taking the limit t — —oo show that the constant has to
vanish.

7. Optional: Classical dynamics of a P(X, @) scalar in FLRW
Consider a P(X, ¢) theory,

Slol = [ d'ay=gP(X.0). (19)

(a) Find the classical equation of motion for ¢ and its stress-energy tensor TH".

(b)

(c)

By comparing with the T* of a perfect fluid,

T/u/ = (p + p) Uy Uy + GuvD (20)

identify p,p and u, in terms of ¢, P and their derivatives.

Show that your equation of motion can also be derived by combining the two Friedmann
equations (i.e. the 00 and i parts of the Einstein equations), which for a perfect fluid are,

. 1
3MEH? = p), —HMp =5 (p+p)- (21)

8. Optional: Massive scalar in de Sitter

This question computes the power spectrum of a massive scalar field in de Sitter, described by the
quadratic action,

(a)

(b)

1 1
Sa] Z/d4$\/—9 {—QVWV%— Fme| (22)

In the Heisenberg picture, ¢y can be expanded in terms of creation and annihilation operators
{ax, dlt} and mode functions fi(7) as in (3). Derive the evolution equation that fx(7) has to
satisfy from the action (22), using conformal time.

To solve this equation, re-write it as an equation for g, = (—T)_3/ 2 fi, and then use the fact
that the two linearly independent solutions of Bessel’s differential equation,

zzﬁiy + 20,y + (2% — 1)y =0, (23)

can be taken to be the two Hankel functions (H, M and H ,52)). This should give you the most
general solution for fi, with two integration constants.

Determine these integrations constants, either using the canonical commutation relations and
Bunch-Davies vacuum condition or by matching this solution in the —k7 — oo limit to the
Minkowski solution as in question 4. You should find

fe(r) = @(_7)3/21151)(_]”) with v = (24)
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which are valid up to an irrelevant (v-dependent) phase.



(d)

Finally, compute the corresponding power spectrum (e.g. by considering (¢ (7)px (7)) in the
Heisenberg picture).

9. Optional: Wavefunction: the canonical formalism

The Hamiltonian for a free, massless scalar on an FLRW background is,

H[%H}=/k;<rik

2
+ k2 |a<pk|2> (26)

where Iy is the momentum conjugate to yy.

(a)
(b)

Show how this Hamiltonian follows from the action (1).

Promoting ¢k and IIx to operators, show that the annihilation operator,

V2k \ a(r.)

can be used to diagonalise the Hamiltonian at time .

Find the wavefunction ¢ (7.) = (¢|0),, of the state |0),, defined by

Gy () = L < 1l + ka(T*)gZak) (27)

a(r)|0),. = 0. (28)

Hint: the field-eigenstate |p) behaves like a position-eigenstate from quantum mechanics, i.e.

(Ploud0)r. = o) and {0}, =~z —v(r) (29)

By making the Gaussian ansatz,

2
(1) o exp <—/kwk(7)|a(7—)2@k|> (30)

for the wavefunction at later times, show that the Schrodinger equation,

1)
0 =H [90, l&p] ( (31)
implies that the Gaussian width wy obeys,

i0; (wia®) = (wp — k*)a® | (32)

with initial condition wy(7.) = k.

Argue (using what you know about simple 1-dimensional Gaussian integrals) that the 2-point

correlator in this state is,

(27)363(k + k')
2Re (wra?)

(Pxdir) = (33)



