
Cosmology E. Pajer, BUSSTEP 2024

Tutorial 1

These problems explore the dynamics and correlators of a scalar field on an inflating spacetime back-
ground. Notice that the problems indicated as “Optional” should be tackled last.

1. Classical dynamics of a massless scalar in FLRW

Consider a canonical (massless) scalar field,

S[ϕ] =

∫
d4x
√
−g

[
−1

2
gµν∇µϕ∇νϕ

]
. (1)

(a) Find the classical equation of motion for ϕ.

(b) Optional: compute the stress-energy tensor Tµν and show that ∇µTµν = 0 is a consequence
of the equations of motion.

(c) For an FLRW background, show that the equation of motion in conformal time becomes,

∂2
τ (aϕ) +

(
k2 − a′′

a

)
(aϕ) = 0 , (2)

where a′ := ∂τa. This is the equation of a damped harmonic oscillator.

2. The massless de Sitter mode functions

Here you will derive the mode functions fk appearing in the quantum free field as

ϕ̂k(τ) = fk(τ)âk + f∗k (τ)â†−k . (3)

(a) Start from the Minkowski mode functions

fMink
k (τ) =

1√
2k
e−ikτ . (4)

Show that at sufficiently early times the de Sitter eom becomes the Minkowski eom for afk.
We therefore expect afk to behave like (4) at early times.

(b) The most general solution to the de Sitter eom is,

fk(τ) = α(1 + ikτ)e−ikτ + β(1− ikτ)e+ikτ , (5)

where α and β are constants of integration. Find the α and β required for afk and ∂τ (afk)
to match fMink

k and ∂τf
Mink
k at some reference time τ∗.

(c) Finally, show that in the limit τ∗ → −∞ these coefficients obey,

α→ i

√
H2

2k3
, β = i

√
H2

2k3

e−2ikτ∗

2(kτ∗)2
→ 0 (6)

and you therefore recover the mode function derived in the lectures (up to an unimportant
overall phase).

3. Two-point correlators in free theories

Using the Heisenberg picture, show that for a free massless scalar field on de Sitter,

(a) lim
τ→0
〈ϕk(τ)ϕk′(τ)〉 = (2π)3δ3(k + k′)

H2

2k3
(7)

(b) lim
τ→0
〈ϕk(τ)Πk′(τ)〉 = (2π)3δ3 (k + k′)

1

2kτ
, (8)

(c) lim
τ→0
〈Πk(τ)ϕk′(τ)〉 = lim

τ→0
〈ϕk(τ)Πk′(τ)〉 , (9)

(d) lim
τ→0
〈Πk(τ)Πk′(τ)〉 = (2π)3δ3 (k + k′)

k

2H2τ2
. (10)
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Extra: You could try to also show these in the Schrödinger picture, using the wavefunction (30).

4. My first cosmological correlator

Compute the bispectrum of a massless scalar field on de Sitter induced by the interactions ϕ̇3 and
ϕ̇(∂iϕ)2.

5. Wavefunction: the path integral formalism

In this problem you will compute the Gaussian wavefunction of a massless scalar in de Sitter and
Minkowski spacetime using the path integral formalism. Recall that the wavefunction is defined
by the path integral

Ψ[φ̄; η0] =

∫ Φ(η0)=φ

Ω

[DΦ] eiS[Φ] , (11)

where the action is

S = −1

2

∫
d3x dη a4 ∂µΦ∂µΦ . (12)

(a) By a shift in the action or otherwise, show that Ψ[φ; η0] = eiS[Φcl] up to an irrelevant phase,
where

Φcl(k, η) = φ(k)
f∗k (η)

f∗k (η0)
, (13)

and fk(η) are the mode functions.

(b) Hence show that Ψ[φ, η] takes the form

Ψ[φ; η0] ≡ exp

[
+

1

2

∫
k,k′

(2π)3δ(k + k′)ψ2(k)φ(k)φ(−k)

]
, (14)

where

ψ2 =
i

H2η2
0

∂ηf
∗
k (η0)

f∗k (η0)
. (15)

Hint: you can show that S[Φcl] reduces to a boundary term by brute force, but it’s much easier
to integrate by part the kinetic term and drop the term proportional to the equations of motion.

(c) Using the dS mode functions show that

ψ2(k, η0) =
ik2

H2η0(1− ikη0)
=

1

H2

[
− k3

(1 + k2η2
0)

+ i
k2

η0(1 + k2η2
0)

]
. (16)

Discuss this result: what is the sign of Reψ2 and why does that matter? What happens to
Imψ2 in the late time limit and should we be worried about it?

6. Optional:Factorized and commutator forms for in-in correlators

Prove that the “factorised” and “commutator” expressions,

〈O(τ)〉 = 〈0|
[
T̄ e

(
i
∫ τ
−∞(1+iδ)

dτ ′Ĥint(τ
′)
)]
Ô(τ)

[
Te

(
−i
∫ τ
−∞(1−iδ) dτ

′Ĥint(τ
′)
)]
|0〉 , (17)

〈O(τ)〉 =

∞∑
N=0

iN
∫ τ

−∞
dτN

∫ τN

−∞
dτN−1 . . .

∫ τ2

−∞
dτ1 (18)

× 〈0| [Ĥint(τ1), [Ĥint(τ2), . . . [Ĥint(τN ), Ô(τ)] . . . ]] |0〉 ,
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for a generic in-in correlator are indeed equivalent.

Hint: Proceed by induction. First prove that they are equivalent at order N = 0 and N = 1. Then,
assuming that they agree at order N − 1, take the time derive of each N th-order expression and
rewrite it as the correlators of some other field to order N − 1. This proves that the expression
agree to order N up to a constant. By taking the limit t → −∞ show that the constant has to
vanish.

7. Optional: Classical dynamics of a P (X,φ) scalar in FLRW

Consider a P (X,φ) theory,

S[φ] =

∫
d4x
√
−gP (X,φ) . (19)

(a) Find the classical equation of motion for φ and its stress-energy tensor Tµν .

(b) By comparing with the Tµν of a perfect fluid,

Tµν = (ρ+ p)uµuν + gµνp , (20)

identify ρ, p and uµ in terms of φ, P and their derivatives.

(c) Show that your equation of motion can also be derived by combining the two Friedmann
equations (i.e. the 00 and ii parts of the Einstein equations), which for a perfect fluid are,

3M2
PH

2 = ρ , −ḢM2
P =

1

2
(ρ+ p) . (21)

8. Optional: Massive scalar in de Sitter

This question computes the power spectrum of a massive scalar field in de Sitter, described by the
quadratic action,

S2[ϕ] =

∫
d4x
√
−g
[
−1

2
∇µϕ∇µϕ−

1

2
m2ϕ2

]
. (22)

(a) In the Heisenberg picture, ϕ̂k can be expanded in terms of creation and annihilation operators

{âk, â†k} and mode functions fk(τ) as in (3). Derive the evolution equation that fk(τ) has to
satisfy from the action (22), using conformal time.

(b) To solve this equation, re-write it as an equation for gk = (−τ)−3/2fk, and then use the fact
that the two linearly independent solutions of Bessel’s differential equation ,

x2∂2
xy + x∂xy + (x2 − ν2)y = 0 , (23)

can be taken to be the two Hankel functions (H
(1)
ν and H

(2)
ν ). This should give you the most

general solution for fk, with two integration constants.

(c) Determine these integrations constants, either using the canonical commutation relations and
Bunch-Davies vacuum condition or by matching this solution in the −kτ → ∞ limit to the
Minkowski solution as in question 4. You should find

fk(τ) =

√
πH

2
(−τ)3/2H(1)

ν (−kτ) with ν =

√
9

4
− m2

H2
. (24)

Hint: You may use the following expansions of the Hankel functions for x→∞

H(1)
ν (x) '

√
2

π

eix√
x
, H(2)

ν (x) '
√

2

π

e−ix√
x
, (25)

which are valid up to an irrelevant (ν-dependent) phase.
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(d) Finally, compute the corresponding power spectrum (e.g. by considering 〈ϕk(τ)ϕk′(τ)〉 in the
Heisenberg picture).

9. Optional: Wavefunction: the canonical formalism

The Hamiltonian for a free, massless scalar on an FLRW background is,

H[ϕ,Π] =

∫
k

1

2

(∣∣∣∣Πk

a

∣∣∣∣2 + k2 |aϕk|2
)

(26)

where Πk is the momentum conjugate to ϕk.

(a) Show how this Hamiltonian follows from the action (1).

(b) Promoting ϕk and Πk to operators, show that the annihilation operator,

â−k(τ∗) =
1√
2k

(
iΠ̂k

a(τ∗)
+ ka(τ∗)ϕ̂k

)
(27)

can be used to diagonalise the Hamiltonian at time τ∗.

(c) Find the wavefunction ψ(τ∗) = 〈ϕ|0〉τ∗ of the state |0〉τ∗ defined by

â(τ∗)|0〉τ∗ = 0 . (28)

Hint: the field-eigenstate |ϕ〉 behaves like a position-eigenstate from quantum mechanics, i.e.

〈ϕ|ϕ̂k|0〉τ∗ = ϕkψ(τ∗) and 〈ϕ|Π̂k|0〉τ∗ = −i δ

δϕ−k
ψ(τ∗) . (29)

(d) By making the Gaussian ansatz,

ψ(τ) ∝ exp

(
−
∫
k

ωk(τ)
|a(τ)ϕk|2

2

)
(30)

for the wavefunction at later times, show that the Schrödinger equation,

i∂τψ = H
[
ϕ,−i δ

δϕ

]
ψ (31)

implies that the Gaussian width ωk obeys,

i∂τ
(
ωka

2
)

= (ω2
k − k2)a2 , (32)

with initial condition ωk(τ∗) = k.

(e) Argue (using what you know about simple 1-dimensional Gaussian integrals) that the 2-point
correlator in this state is,

〈ϕ̂kϕ̂k′〉 =
(2π)3δ3(k + k′)

2 Re (ωka2)
. (33)
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